A study on the charge-discharge mechanism of Co3O4 as an anode for the Li ion secondary battery

نویسندگان

  • Yong-Mook Kang
  • Min-Sang Song
  • Jin-Ho Kim
  • Hyun-Seok Kim
  • Min-Sik Park
چکیده

Co3O4 has shown acceptable electrochemical properties as the anode material of Li secondary batteries. In detail, its capacity reached about 700 mAh/g, twice as high as graphite, and 93.4% of initial capacity was retained after 100 cycles. EIS (electrochemical impedance spectroscopy) analyses revealed that after the 1st cycle, the insertion or extraction of Li ions in Co3O4 can occur homogeneously and reversibly (randless-like behavior, homogeneous mixture: Co + Li2O (in the state of Li insertion), Co3O4 (in the state of Li extraction)). In fact, the coulombic efficiency of Co3O4 was almost 100% except for the 1st cycle. According to P. Poizot's research on several kinds of transition metal oxides, such as Co3O4, CoO, NiO, etc., a small Li2O particle size and catalytic activity of the transition metal are expected to decrease the binding energy of Li2O tremendously. As a result, Li2O should be easy to decompose, and transition metal oxides should be able to charge or discharge reversibly by formation or decomposition of Li2O. However, this assumption has never been confirmed by experimental results. In our results, the CV (cyclic voltammogram) of a Li2O–Co mixture shows much larger oxidation and reduction peaks than that of Li2O. Based on XRD analyses, oxidation and reduction in the CV of Li2O correspond, respectively, to the decomposition and formation of Li2O. So, it can be asserted that Co addition to Li2O facilitates decomposition and formation processes in Li2O and that the catalytic effect of the transition metal must be one of the main causes that make Li2O form or decompose repeatedly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrochemical properties of iron oxide nanoparticles as an anode for Li-ion batteries

The synthesis of iron oxide nano-particles by direct thermal decomposition was studied. Simultaneous thermal analysis and Fourier transform infrared spectroscopy results confirmed the formation of iron-urea complex, and disclosed iron oxide formation mechanism. Calcination of the iron-urea complex at 200°C and 250°C for 2 hrs. resulted in the formation of maghemite along with hematite as a seco...

متن کامل

A high performance lithium-ion battery using LiNa0.02K0.01FePO4/C as cathode material and anatase TiO2 nanotube arrays as anode material

In this paper we report on a lithium ion battery (LIB) based on improved olivine lithium iron phosphate/carbon (LiFePO4/C) as cathode material and LiNa0.02K0.01FePO4/C  synthesized by sol-gel method and TiO2 nanotube arrays (TNAs) with an anatase phasesynthesized through anodization of Ti foil as an anode electrode. Crystallographic structure and surface morphology of the cathode and anode mate...

متن کامل

SnO2 Nanowires on Carbon Nanotube Film as a High Performance Anode Material for Flexible Li-ion Batteries

Today, Li-ion batteries (LIBs) are the most common rechargeable batteries used in electronic devices. SnO2 with theoretical specific capacity of 782 mAh/g is among the best anode materials for LIBs. In this report, Three-dimensional SnO2 nanowires (NWs) on carbon nanotube (CNT) thin film (SnO2 / CNT) is fabricated using a combination of vacuum filtration and thermal evaporation techniques. The ...

متن کامل

Electrode Materials for Lithium Ion Batteries: A Review

Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...

متن کامل

Improved nanofluid cooling of cylindrical lithium ion battery pack in charge/discharge operation using wavy/stair channels and copper sheath

Abstract: In order to improve the thermal management system for cooling an electric vehicle battery pack, the thermal performance of the battery pack in two states of charge and discharge in different working conditions by using a copper sheath around the batteries and a copper sheath, as well as a stair channel on top of the battery pack and using of nanofluid as cooling fluid, has been studie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017